Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Physics of Fluids ; 35(4), 2023.
Article in English | Web of Science | ID: covidwho-20231129

ABSTRACT

Dental services are yet to return to a semblance of normality owing to the fear and uncertainty associated with the possible airborne transmission of diseases. The present study aims to investigate the impacts of environmental conditions [changes in ventilation location, ventilation rate, and relative humidity (RH)] and variations in dental patient's breathing rate on droplet transmission during dental service. Computational fluid dynamics simulation was performed based on our previous experimental study during ultrasonic scaling. The impacts of different factors were numerically analyzed by the final fate and proportion of emitted droplets in the dental surgery environment. The results revealed that about 85% of droplets deposited near the dental treatment region, where the patient's torso, face, and floor (dental chair) accounted for around 63%, 11%, and 8.5%, respectively. The change in the ventilation location had a small impact on the deposition of larger droplets (> 60 mu m), and a spatial region with high droplet mass concentration would be presented near the dental professional. The change in the ventilation rate from 5 to 8 ACH led to a 1.5% increment in the fraction of escaped droplets. 50% RH in dental environments was recommended to prevent droplets' fast evaporation and potential mold. Variations in the patient's breathing rate had little effect on the final fate and proportion of emitted droplets. Overall, environmental factors are suggested to maintain 50% RH and larger ACH in dental surgery environments. The findings can give policymakers insights into the role of environmental factors on infection control.

2.
Building Simulation ; : 14, 2022.
Article in English | Web of Science | ID: covidwho-1926088

ABSTRACT

Numerous short-term exposure events in public spaces were reported during the COVID-19 pandemic, especially during the spread of Delta and Omicron. However, the currently used exposure risk assessment models and mitigation measures are mostly based on the assumption of steady-state and complete-mixing conditions. The present study investigates the dynamics of airborne transmission in short-term events when a steady state is not reached before the end of the events. Large-eddy simulation (LES) is performed to predict the airborne transmission in short-term events, and three representative physical distances between two occupants are examined. Both time-averaged and phase-averaged exposure indices are used to evaluate the exposure risk. The results present that the exposure index in the short-term events constantly varies over time, especially within the first 1/ACH (air changes per hour) hour of exposure between occupants in close proximity, posing high uncertainty to the spatial and temporal evolutions of the risk of cross-infection. The decoupling analysis of the direct and indirect airborne transmission routes indicates that the direct airborne transmission is the predominated route in short-term events. It suggests also that the general dilution ventilation has a relatively limited efficiency in mitigating the risk of direct airborne transmission, but determines largely the occurrence time of the indirect one. Given the randomness, discreteness, localization, and high-risk characteristics of direct airborne transmission, a localized method that has a direct interference on the respiratory flows would be better than dilution ventilation for short-term events, in terms of both efficiency and cost.

3.
Build Environ ; 195: 107760, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1116397

ABSTRACT

Viable aerosols in the airflow may increase the risk of occupants contracting diseases. Natural ventilation is common in buildings and is accompanied by re-entry airflow during the ventilation process. If the re-entry airflow contains toxic or infectious species, it may cause potential harm to residents. One of the Covid-19 outbreaks occurred in a public residential building at Luk Chuen House (LC-House) in Hong Kong. It is highly suspected that the outbreak of the disease is related to the re-entry airflow. The study attempts to explain and discuss possible causes of the outbreak. In order to understand the impact of airflow on the outbreak, a public residential building similar to LC-House was used in the study. Two measurements M - I and M - II with the same settings were conducted for a sampling unit in the corridor under low and strong wind conditions respectively. The sampling unit and the tracer gas carbon dioxide (CO2) were used to simulate the index unit and infectious contaminated airflow respectively. The CO2 concentrations of the unit and corridor were measured simultaneously. Two models of Traditional Single-zone model (TSZ-model) and New Dual-zone model (NDZ-model) were used in the analysis. By comparing the ACH values obtained from the two models, it is indicated that the re-entry airflow of the unit is related to the corridor wind speeds and this provides a reasonable explanation for the outbreak in LC-House, and believes that the results can help understand the recent frequent cluster outbreaks in other residential buildings.

SELECTION OF CITATIONS
SEARCH DETAIL